Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 133(7)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36795492

RESUMO

Although protein hydroxylation is a relatively poorly characterized posttranslational modification, it has received significant recent attention following seminal work uncovering its role in oxygen sensing and hypoxia biology. Although the fundamental importance of protein hydroxylases in biology is becoming clear, the biochemical targets and cellular functions often remain enigmatic. JMJD5 is a "JmjC-only" protein hydroxylase that is essential for murine embryonic development and viability. However, no germline variants in JmjC-only hydroxylases, including JMJD5, have yet been described that are associated with any human pathology. Here we demonstrate that biallelic germline JMJD5 pathogenic variants are deleterious to JMJD5 mRNA splicing, protein stability, and hydroxylase activity, resulting in a human developmental disorder characterized by severe failure to thrive, intellectual disability, and facial dysmorphism. We show that the underlying cellular phenotype is associated with increased DNA replication stress and that this is critically dependent on the protein hydroxylase activity of JMJD5. This work contributes to our growing understanding of the role and importance of protein hydroxylases in human development and disease.


Assuntos
Histona Desmetilases , Oxigenases de Função Mista , Humanos , Animais , Camundongos , Histona Desmetilases/genética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Processamento de Proteína Pós-Traducional
2.
PLoS One ; 2(10): e1000, 2007 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-17912339

RESUMO

Matrix metalloproteinases (MMPs) and their endogenous inhibitors TIMPs (tissue inhibitors of MMPs), are two protein families that work together to remodel the extracellular matrix (ECM). TIMPs serve not only to inhibit MMP activity, but also aid in the activation of MMPs that are secreted as inactive zymogens. Xenopus laevis metamorphosis is an ideal model for studying MMP and TIMP expression levels because all tissues are remodeled under the control of one molecule, thyroid hormone. Here, using RT-PCR analysis, we examine the metamorphic RNA levels of two membrane-type MMPs (MT1-MMP, MT3-MMP), two TIMPs (TIMP-2, TIMP-3) and a potent gelatinase (Gel-A) that can be activated by the combinatory activity of a MT-MMP and a TIMP. In the metamorphic tail and intestine the RNA levels of TIMP-2 and MT1-MMP mirror each other, and closely resemble that of Gel-A as all three are elevated during periods of cell death and proliferation. Conversely, MT3-MMP and TIMP-3 do not have similar RNA level patterns nor do they mimic the RNA levels of the other genes examined. Intriguingly, TIMP-3, which has been shown to have anti-apoptotic activity, is found at low levels in tissues during periods of apoptosis.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Metaloproteinase 14 da Matriz/fisiologia , Metaloproteinase 16 da Matriz/metabolismo , RNA/biossíntese , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Xenopus laevis/metabolismo , Animais , Apoptose , Morte Celular , Proliferação de Células , Modelos Biológicos , RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...